9,248 research outputs found

    Imaging diagnosis-computed tomography of traction bronchiectasis secondary to pulmonary fibrosis in a Patterdale Terrier

    Get PDF
    An 8-year-old, Patterdale terrier was referred for evaluation of tachypnoea, exercise intolerance, and weight loss. Computed tomographic images showed pneumomediastinum, diffuse pulmonary ground glass opacity, and marked dilatation of peripheral bronchi, but no evidence of thickened bronchial walls. The histopathologic diagnosis was diffuse pulmonary interstitial fibrosis, type II pneumocyte hyperplasia, and bronchiectasis. The lack of evidence of primary bronchitis supported a diagnosis of traction bronchiectasis. Traction bronchiectasis can occur as a sequela to pulmonary fibrosis in dogs. (C) 2016 American College of Veterinary Radiology

    Experimental and theoretical supersonic lateral-directional stability characteristics of a simplified wing-body configuration with a series of vertical-tail arrangements

    Get PDF
    An experimental investigation was conducted to provide a systematic set of lateral-directional stability data for a simplified wing-body model with a series of vertical-tail arrangements. The study was made at Mach numbers from 1.60 to 2.86 at nominal angles of attack from -8 to 12 deg and Reynolds number of 8.2 million per meter. Comparisons at zero angle of attack were made with three existing theoretical methods (MISLIFT - a second-order shock expansion and panel method; APAS - a slender body and first order panel method; and PAN AIR - a higher order panel method) and comparisons at angle of attack were made with PAN AIR. The results show that PAN AIR generally provides accurate estimates of these characteristics at moderate angles of attack for complete configurations with either single or twin vertical tails. APAS provides estimates for complete configurations at zero angle of attack. However, MISLIFT only provides estimates for the simplest body-vertical-tail configurations at zero angle of attack

    Effect of Reynolds number on stability characteristics of a cruciform wing-body

    Get PDF
    An experimental investigation was conducted to determine the effect of Reynolds number on the stability characteristics of a body with cruciform wings at large angles of attack. Pressure distributions and force and moment data (axial force not measured) are presented for Mach 1.60 and 2.70, Reynolds numbers based on body diameter from approximately 130,000 to 2,800,000, and angles of attack from 0 deg to 50 deg. In general, the data show only small effects of Reynolds number throughout the range of test condition. Also discussed are force balance and pressure data that suggest a direct relationship between wind choking and the onset of a nonlinear stability variaton with angle of attack

    Pressure distributions on three different cruciform aft-control surfaces of a wingless missile at Mach 1.60, 2.36, and 3.70. Volume 2: Clipped delta tail

    Get PDF
    Pressure coefficients were obtained in the Langley Unitary Plan wind tunnel for a wingless missile with a clipped delta tail. The angle of attack was varied from -4 deg to 20 deg, model roll angle was varied from 0 deg to 90 deg in 22.5 deg increments, and tail deflections were 0 deg to - 15 deg. The pressures were measured on two adjacent tail surfaces using 91 pressure orifices per tail surface. Results are presented in plotted and tabular form

    Bose-Einstein condensate in a rapidly rotating non-symmetric trap

    Full text link
    A rapidly rotating Bose-Einstein condensate in a symmetric two-dimensional harmonic trap can be described with the lowest Landau-level set of single-particle states. The condensate wave function psi(x,y) is a Gaussian exp(-r^2/2), multiplied by an analytic function f(z) of the complex variable z= x+ i y. The criterion for a quantum phase transition to a non-superfluid correlated many-body state is usually expressed in terms of the ratio of the number of particles to the number of vortices. Here, a similar description applies to a rapidly rotating non-symmetric two-dimensional trap with arbitrary quadratic anisotropy (omega_x^2 < omega_y^2). The corresponding condensate wave function psi(x,y) is a complex anisotropic Gaussian with a phase proportional to xy, multiplied by an analytic function f(z), where z = x + i \beta_- y is a stretched complex variable and 0< \beta_- <1 is a real parameter that depends on the trap anisotropy and the rotation frequency. Both in the mean-field Thomas-Fermi approximation and in the mean-field lowest Landau level approximation with many visible vortices, an anisotropic parabolic density profile minimizes the energy. An elongated condensate grows along the soft trap direction yet ultimately shrinks along the tight trap direction. The criterion for the quantum phase transition to a correlated state is generalized (1) in terms of N/L_z, which suggests that a non-symmetric trap should make it easier to observe this transition or (2) in terms of a "fragmented" correlated state, which suggests that a non-symmetric trap should make it harder to observe this transition. An alternative scenario involves a crossover to a quasi one-dimensional condensate without visible vortices, as suggested by Aftalion et al., Phys. Rev. A 79, 011603(R) (2009).Comment: 20 page
    corecore